
Sound Manipulations

In the previous section, we discussed how to change the volume of a sound by
modifying the values of the amplitude stored in each sample. To increase the
volume, we multiply each sample value by a factor greater than 1, and to decrease
the volume, we multiply each sample value by a factor less than 1. This is very
similar to how we increased and decreased the red, green, and blue color values in a
picture. With pictures, we saw that we did not need separate functions to increase
and decrease the red/green/blue values: we could use one function that takes the
multiplier as a parameter. The same idea applies to volume – we don’t need
separate functions to increase and decrease it. We can use one function that takes
the multiplier as a parameter.

Example: ChangeVolume

This function changes the volume of a sound

A factor > 1 increases the volume

A factor < 1 decreases the volume

def changeVolume(sound, factor):

 newSound = duplicateSound(sound)

 for sample in getSamples(newSound):

 value = getSampleValue(sample)

 setSampleValue(sample, value * factor)

 return newSound

We also previously discussed that if the volume of a sound is increased too much,
we will get the effect of clipping taking place. But now, suppose we want to make
the volume of a sound to be as loud as possible. This is called normalizing the
sound. In order to do this, we need to find out what the largest (absolute) value of a
sample in the sound is. Once we know the largest value, we figure out what factor to
multiply our samples by. We know the largest value a sample can have is 32767. If
we divide this by our largest sample value, we get the factor we should use:

 𝑓𝑎𝑐𝑡𝑜𝑟 =
32767

𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒
 .

To find the largest absolute value of the samples, we will define a variable, say,
largest, and assign it to be 0. (Using absolute values, every value will be greater

than or equal to 0). Then we will check all the sample values. If we find a sample
value with absolute value greater than largest, we will replace largest with
that new value. We will keep checking the sample values, comparing to the new
value of largest, until we have compared all sample values, and the very largest
value is stored in the variable largest. Python has a built-in function called max
that will figure out the maximum of two values. We will use this to help us. Our
function to normalize a sound looks like the following:

Example: Normalize a sound
This function makes a sound as loud as possible

without clipping

def normalize(sound):

 newSound = duplicateSound(sound)

 # find the largest sample value

 largest = 0

 for s in getSamples(newSound):

 largest = max(largest, abs(getSampleValue(s)))

 # compute the multiplication factor

 factor = 32767.0/largest

 # change the sample values

 for s in getSamples(newSound):

 value = getSampleValue(s)

 setSampleValue(s, value * factor)

 return newSound

Exercise: Notice that the last loop in the normalize function looks exactly like the
changeVolume function. Rewrite the normalize function so that it calls the
changeVolume function.

Exercise: Write a function called onlyMaximize that takes a sound as input and
will set all sample values to be the maximum values. This function should duplicate
the original sound and make all changes to the copy. If a sample value is positive, it
should be set to 32767, and if it is negative, it should be set to -32768. The new
sound should be returned.

Follow-up questions: What does onlyMaximize do to a sound? What do you
hear?

In the previous section, we saw that there are two ways to loop through all of the
samples in a sound – we can use the getSamples function , or we can use the
range function with getNumSamples. When we use the latter method, we work

with the index of each sample to get and set the values. This method will give us
more freedom to access only parts of the sound, instead of the entire sound.

Why might this be useful? Maybe we only want to change the volume of part of a
sound, or maybe we want to change the frequency of part of a sound, or maybe we
want to reverse a sound or part of a sound.

In the following example, we double the volume of the first half of the sound and
decrease the volume by 40% in the second half.

Example: Increase and Decrease

def increaseAndDecrease(sound):

 newSound = duplicateSound(sound)

 numSamples = getNumSamples(newSound)

 # double volume in first half

 for index in range(numSamples/2):

 value = getSampleValueAt(newSound, index)

 setSampleValueAt(newSound, index, value * 2)

 # decrease the volume of second half by 40%

 for index in range(numSamples/2, numSamples):

 value = getSampleValueAt(newSound, index)

 setSampleValueAt(newSound, index, value * 0.60)

 # return the new sound

 return newSound

 Original Sound Result after increase and decrease

Another example where using the indices of sounds is useful is in reversing a sound.
To reverse a sound, we want to copy the samples in one sound in reverse order to a
new sound. Here’s an example of how we might do this:

Example: Reversing a sound

def reverse(sound):

 # create a new empty sound with same # of samples as

 # the original sound

 newSound = makeEmptySound(getNumSamples(sound))

 # set up index to start at end of new sound

 newIndex = getNumSamples(sound)-1

 # loop through original sound, setting

 # values in new sound

 for index in range(getNumSamples(sound)):

 value = getSampleValueAt(sound, index)

 setSampleValueAt(newSound, newIndex, value)

 newIndex = newIndex -1

 # return the new sound

 return newSound

 original sound reversed sound

Exercise: Write a function that mirrors the first half of the sound into the second half.
That is, the second half of the sound should be the reverse of the first half.

In our introductory discussion about sound, we learned that pitch is related to
frequency. We can change the pitch of a sound by changing the frequency.

In the following pictures of sounds, we can see that the original sound is being
“stretched”, or more precisely, the frequency has been halved. Each sample in the
original sound is being used twice in the new sound. So, the length of time for one cycle
has been doubled. When you look at the waves for the sounds in these pictures, you can
see that the sounds have the same shape, but the second one looks stretched.

 original sound sound with halved frequency

So how do we do this with code? Our algorithm is very similar to what we did to scale a
picture up in size. To make a picture larger, we used every pixel twice. We are going to
do the same thing with samples in our sounds – we will use each sample value twice.

Example: Halving the frequency

This function halves the frequency of the original sound

The new sound is twice as long, and sounds slower and deeper

def halfFrequency(sound):

 # make a new sound with twice as many samples as original

 numSamples = getNumSamples(sound)

 newSound = makeEmptySound(numSamples * 2)

 # loop through original sound, setting values in new sound

 index = 0

 for newIndex in range(numSamples * 2):

 val = getSampleValueAt(sound, int(index))

 setSampleValueAt(newSound, newIndex, val)

 index = index + .5

 # return the new sound

 return newSound

We could just as easily double the frequency of a sound. Again, we would use ideas
similar to what we used to make a picture smaller. To make a picture smaller, we used
every other pixel; to double the frequency, we will use every other sample value. So our
original sound would look like this with a doubled frequency:

 original sound sound with doubled frequency

In the next Lab: Simple Sound Manipulation, you will experiment with these functions, as
well as write a function to double the frequency of a sound. You will also experiment
with splicing sounds (copying sounds into other sounds).

http://www.cs.kzoo.edu/cs107/Labs/Lab6.shtml

